
gLExec and MyProxy
integration in PANDA

Author list here...

The pilot jobs model

Pilot jobs can probe the environment on the remote worker node before
pulling down the payload job from the server and executing it. Such design
allow for improved logging and monitoring capabilities, and become the pilot
a "smart wrapper" for the payload job.

Two modes of operation:

• Single user mode: the production users submit production jobs which run using
their own proxy.

• Multiuser mode: pilots are submitted under the credentials of a privileged VO
member and execute jobs for one or more different users.

 - How to determine which user was responsible for each job?
 - Should users be able to use proxies they do not own?

Possible solution: gLExec

gLExec

gLExec can log the user credentials when the pilot starts to run the job.

gLExec can operate also in setuid mode: the uid is changed to the user’s who runs
the job. gLExec performs this uid/gid change:

• It is a Grid version of suexec program.
• It runs as setuid process on the CE.
• It performs switch based on results from LCAS/LCMAPS mapping.

This require having the privilege to run as root. Many site admins do not like to
 allow users to run as root. However, in the setuid mode the security behavior is the
 same one as for normal submission. When the setuid mode is not used, all users jobs
 are run under the same uid, having access to each other processes and files
 (including the proxies).

gLExec can be configured to restrict the number of users allowed to invoke it.

Job flow

Flow of a grid job through the Grid
Computing Service and the LRMS for the
pilot jobs scenario

Image courtesy of the gLExec group

Pilot jobs/gLExec need
access to the user credentials

LCAS: Local Centre Authorization Service

LCAS is the authorization engine that adds access control to the gatekeeper.

Pluggable framework of independent authorization modules.

Decisions are based on the requested resource (RSL), requestor identity, authorization
credentials in the proxy certificate.

In case of VOMS: the VO, the group and the role will be examined.

Policy language selects authorization plug-ins to be invoked.

Access decision is the logical and of the plug-ins (FIXME):

 Allowed and banned-users list inspection based on DN.

 Wall-time limiting module.

 VOMS module compares against a site-local access control list.

 External parties may add their own modules.

LCMAPS: Local Credential MAPping Service

Maps Grid identities to local uid/gid Unix accounts.

Similar to LCAS, a pluggable module framework.

Acquisition and enforcement module types:
o Separation needed to not impede module tasks.
o Policy description language for configuration.

Modules:
 Map to a local Unix account and group. Statistics from users DN to uid. gridmapfile.

 Map to pool accounts, i.e. the account lease system. Unix group also set.
 VOMS support. VOMS groups and roles mapped onto Unix groups.

 Map DN to local kerberos and AFS tokens.
 Set the real and effective uid/gid for current processes.
 LDAP. Update a fabric-central user directory for uid/gid info.

External parties can add their own modules.

Payload jobs under final user identity
Jobs are run by a NEW user.

The execution moves to a new $HOME directory:

 Files are not in the new working area.
 Does the new user have permissions to read/write/execute in the original working area? Usually not:

 Copy all files to a different location before invoking gLExec. Slow process. Two copy operations:
before and after execution. Second copy has to be removed after execution for security.

 Change the Unix permissions to the pilot working dir. Security risk?

Does the new user have permissions to read/write the input/output files from/to the SE?

The pilot environment vanishes. In particular, the LD_LIBRARY_PATH disappears.
 Permitting user control over dynamically linked libraries would be disastrous for setuid/setgid programs if special

measures weren't taken. Therefore, in the GNU loader (which loads the rest of the program on program start-up), if the
program is setuid or setgid these variables (and other similar variables) are ignored or greatly limited in what they can
do. The loader determines if a program is setuid or setgid by checking the program's credentials; if the uid and euid
differ, or the gid and the egid differ, the loader presumes the program is setuid/setgid (or descended from one) and
therefore greatly limits its abilities to control linking. If you read the GNU glibc library source code, you can see this; see
especially the files elf/rtld.c and sysdeps/generic/dl-sysdep.c. This means that if you cause the uid and gid to equal the
euid and egid, and then call a program, these variables will have full effect. Other Unix-like systems handle the situation
differently but for the same reason: a setuid/setgid program should not be unduly affected by the environment variables
set.

 http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html

 Modify the /etc/ld.so.conf file (not a good idea ?)

Integration in PANDA
A new VOMS role and Unix account have been created. Users with “role=pilot” are mapped to the new
“atlasplt” pool account. Only atlasplt has the privilege to invoke gLExec in setuid mode and run jobs under a
 new uid. By default, $OSG_GRID/glexec_osg/etc/glexec.conf has a setting like
 "user_white_list = *"

To modify /etc/ld.so.conf is not a good idea to recover the pilot environment. It is architecture depending and
root privileges are needed.
 Intermediate wrapper to recreate the vanished environment. A wrapper script recreates the environment

and runs the payload job. The pilot invokes this wrapper script.

Users credentials are pre-allocated in a MyProxy credential caching service.
 Users proxies are placed in a myproxy server. Now BNL has a running server: pandaprx.usatlas.bnl.gov
$ myproxy-init -s pandaprx.usatlas.bnl.gov -x -Z /DC=org/DC=doegrids/OU=People/CN=Pilot Owner 123456 -d --voms atlas

 Pilot jobs retrieve the right user proxy before invoking gLExec.
$ myproxy-logon -s pandaprx.usatlas.bnl.gov --no_passphrase -a /tmp/x509up_u0000 -l UserName --out /tmp/x509_new

Myproxy server Allows the specified entity
to retrieve credentials w/o
password

Uses the certificate
subject (DN) as username
Instead of $LOGNAME env var

VOMS attributes are
needed to invoke
gLExec

Credentials for the entity
allowed to retrieve the proxy
(pilot)

User logname.
It should be his own DN

Retrieved proxy path

Integration in Panda (cont’d)
pathena (the interface between athena and Panda) has been instrumented to perform the proxy delegation.
A lifetime check has been incorporated to avoid that the user is requested for the password each time a new
job is created. The existence of a valid proxy in the server is verified, and its timeleft is checked. Only when
there is no proxy, or it is short time, a new one is created and delegated.

$ myproxy-info -s pandaprx.usatlas.bnl.gov -l UserName

username: /DC=org/DC=doegrids/OU=People/CN=Jose Caballero 511275

owner: /DC=org/DC=doegrids/OU=People/CN=Jose Caballero 511275

trusted retrieval policy: /DC=org/DC=doegrids/OU=People/CN=Jose Caballero 511275

timeleft: 167:57:52 (7.0 days)

gLExec usage will be a site attribute, rather than a user/job attribute, included in PANDA config files.

Who is in charge of the automatic periodically renewal of the user proxies? The job submission systems
(Condor, WMS/RB in gLite...) only can manage one proxy: the pilot one
 A daemon running in the background checks the timeleft of the retrieved proxy and renews it when it is

close to expire.

 Maybe a future version of Condor can manage automatically this issue?

Security check: verification that the DN and the logname mach. Otherwise, a malicious user could delegate a
proxy using a different logname from his and runs jobs that he should not.

Integration in Panda (cont’d)
These new issues bring new problems. A new error code for easy diagnosis and troubleshooting has been
incorporated to the current error list. The new error codes are propagated until the DB also.

2100 MyProxyError: server name not specified
2101 MyProxyError: voms attributes not specified
2102 MyProxyError: user DN not specified
2103 MyProxyError: pilot owner DN not specified
2104 MyProxyError: invalid path for the delegated proxy
2105 MyProxyError: invalid pilot proxy path
2106 MyProxyError: no path to delegated proxy specified

2200 MyProxyError: myproxy-init not available in PATH
2201 MyProxyError: myproxy-logon not available in PATH
2202 MyProxyError: myproxy-init version not valid
2203 MyProxyError: myproxy-logon version not valid

2300 MyProxyError: proxy delegation failed
2301 MyProxyError: proxy retrieval failed

2400 MyProxyError: security violation. Logname and DN do not match

gLExec only works fine when the
proxy is in the local machine,
e.g. the /tmp directory

Not all versions support delegation

without password

Security checks

gLExec installation
BNL's Linux Farm has worker nodes which are kept very static: it is not possible to roll out RPMs/updates on
a whim. And our OSG client software installation resides in NFS, for easy management and to avoid having
to alter worker nodes. So having gLExec installed in NFS was a necessity. However, as a security application,
gLExec rightly takes several steps to restrict usage. Most important is that the gLExec executables may not
reside on an NFS-mounted partition. They must be local. These constraints led us to use a mixed
arrangement requiring some customization.
 On the Worker Nodes: symbolic link to NFS for the configuration directory. This will allow global

config to be altered without touching each Worker Node:
 /etc/glexec -> /usatlas/OSG/osg_wn_client/current/glexec-osg/etc
 Places local copies of executables on each WN, which include the version string. That way multiple

executables can be available in case a rollback is necessary.
 On the NFS OSG installation dir: symbolic links from NFS OSG installation to local files:
 /usatlas/OSG/osg_wn_client/X.Y.Z/glxec-osg/sbin/

 glexec -> /usr/libexec/glexec-X.Y.Z

 glexec_fork -> /usr/libexec/glexec_fork-X.Y.Z.

This approach is very appealing because:
i. It keeps everything under $VDT_LOCATION.

ii. It does not require coordinating both and NFS-located pacman install and a local pacman install.

iii. It does not require even a medium-weight gLExec RPM install.

iv. It allows for smoother transitions between OSG versions usable on a Worker Node.

gLExec installation (cont’d): GUMS

Any site using gLExec needs to configure GUMS to allow the worker nodes to make mapping calls.

In a sense they are now acting as gatekeepers. So a host-to-group mapping needs to be established
for all worker nodes (acas*.usatlas.bnl.gov in our case).

The contents of this mapping should be identical to that for the Globus gatekeeper, i.e. a user should
be mapped on a worker node to precisely the same account as they would have been on the
gatekeeper.

Nothing is stopping a gLite site from downloading GUMS from the DVT, in which case it is easy to
install. GUMS is usually installed on a separate machine, so there would be no port conflict issues:

1. Creating a GUMS configuration template for gLite sites.

2. Need to add CAs for CRLs for VOMS servers within the GUMS configuration.

3. GUMS caches names from VOMS servers, which may be a privacy concern. If generic grid
proxies were not used, this would not be necessary.

